厉害!LED照一照 “基因剪刀”就能指哪剪哪
近日有关于徐靖杰的话题受到了许多网友们的关注,大多数网友都想要知道徐靖杰问题的具体情况,那么关于徐靖杰的相关信息,小编也是在网上收集并整理的一些相关的信息,接下来就由小编来给大家分享下小编所收集到的与徐靖杰问题相关的信息吧。
以上就是关于徐靖杰这个话题的相关信息了,希望小编分享给大家的这些新闻大家能够感兴趣哦。
通过感光元器件实现对事物的控制,“光控”在现实生活中已慢慢普及,例如手机人脸识别解锁、汽车雾灯自动开启……这次被光操控的是基因编辑。我国科学家的这一研究成果近日发表在《科学·进展》杂志上。
“LED发出的730nm(纳米)的远红光可激活系统进行基因编辑工作。”论文通讯作者、华东师范大学生命科学学院、医学合成生物学研究中心研究员叶海峰对科技日报记者表示,只有在光照到的地方,基因的“编辑”“剪切”才会发生,从而真正做到指哪剪哪。
创建关键元件为基因编辑装上自动开关
CRISPR-Cas9基因编辑技术近年来应用广泛,被形象地称为“基因剪刀”,使得人类掌握了简便可行的基因“操控术”。
然而,要更便捷地操控基因编辑,需要一个“便捷按钮”,让人们按一下就能启动,再按一下就能关闭,推动其走进“自动化时代”。尤其当基因编辑要走进临床应用,必须要具有灵活、高精度的操控方法,才能使其更具安全性。
“实现光控”需要在基因编辑前装一个“光感装置”用于“引爆”,这个装置长什么样子?有哪些零件?
在红细菌中有一种蛋白BphS,它在接收到远红光的信号后会被激活,释放一个信号。而在放线菌里的蛋白BldD,接收到这个信号后能与DNA序列结合。
“我看到这个信息的时候,觉得非常兴奋。前一种蛋白让光和生物体‘接上头’,后一种蛋白又‘链接’上了DNA。”叶海峰说,这种“跨界打通”意味着有很多工作可做,因为只要信号能传导到DNA,就能推进生物学的操控。
叶海峰团队以放线菌中的BldD蛋白为基础,将其亲和DNA序列与哺乳动物的转录激活子融合,创制了一个杂交型的转录激活子,这一开关成为按下基因编辑“启动键”的关键元件。
这一元件的前方设置了光敏蛋白,接收光信号;后方连接上“基因剪刀”Cas9核酸酶。这个巧妙的设计使得整个系统只有感光后,才能够启动基因编辑。光控基因编辑的“图纸”就此设计完成。
验证上百种序列拼出远红光操控的编辑系统
理论“图纸”和关键元器件都已准备就绪,叶海峰团队开始用合成生物学的方法对这些关键元器件进行组装。
令人意想不到的是,在细胞水平的验证中,基因编辑并没有因为光的有无而产生明显的变化,远红光照射没能刺激Cas9核酸酶的高量表达,熄灭光源也没有阻止基因编辑工作。
问题出在了哪里?按照“图纸”设计,整个流程应该是无懈可击的。
叶海峰百思不得其解。“这一研究工作我们持续推进了5年,有的关键性问题如果不能解决将会耽误整个研究的进展。”叶海峰说,合成生物学要在活体内运转,会有很多无法排查的意外。它不像编程,跑一遍会有纠错,或者至少会提示哪个部分出现“BUG”。
这次的“BUG”出现在哪里?启动基因的工作被相继验证。2017年、2018年,叶海峰课题组在《科学·转化医学》《美国科学院院刊》相继发表论文,证明了远红光调控转基因表达控制系统的可行性以及基因编辑CRISPR-dCas9酶的转录激活都是可行的。
“我们试验了各种方案,但整个系统的运行却都失败了。”叶海峰说,这个结果意味着需要对策略进行根本性的调整。
图源:图虫创意
直到有一天,叶海峰在《自然·生物技术》上看到一篇张锋(基因编辑技术发明人之一)的文章,上面说基因编辑的Cas9核酸酶可以一拆为二,拆开来之后的两半再合起来也是有功能的。
“受到这样的启发,我们就想可不可以把它拆成两半,一半是连续的强表达(自始至终一直表达),另一半用光驱动调控来表达。”叶海峰说,就像“钥匙”的两半拼在一起才能开锁一样。
“拼”这个动作又要怎么自动实现呢?叶海峰想到了热纤维梭菌中的一对能够自发相互结合的蛋白Coh2和DocS。让它们加入进来,分别与Cas9的两部分融合,Coh2和DocS就会像“磁石”一样,将Cas9的两部分拼装成完整、有功能的Cas9核酸酶。
“究竟是哪一半用光来调控诱导表达,都是有说法的。”叶海峰回忆,课题组对多种情况进行了试验,至少进行了上百种不同序列的验证,以寻找最佳光控基因编辑效果。
“我们还对整个系统进行了优化,例如质粒的浓度配比,核输入信号和核输出信号的选择及组合等,并在细胞水平进行了测试。”叶海峰说,经过严谨的优化,实验结果最终令人满意,并将其命名为“FAST系统”。
研究结果显示,FAST系统在LED发射的低强度远红光照射下可以诱导细胞内的基因编辑,而在黑暗情况下保持“静默”的效果也很好。
进一步研究表明,FAST系统在多种细胞中均显示出可调控的基因编辑效果,并具有很好的光照强度和时间依赖性,以及高度的时空特异性,为研究FAST系统在动物体内的可调控基因编辑能力奠定了基础。
“我们至今也不太清楚为什么直接调控表达完整Cas9核酸酶的系统不成功。”叶海峰说,不按程序走,这就是生命科学的神奇之处,而合成生物学正是在破解这些意外中积累起来,最终解决更大的科学命题。
光照时间太长活体高效递送还需“打怪升级”
生命体是复杂的,在细胞水平运转良好的系统在活体中能不能工作,仍面临着重重挑战。为此,在进行了细胞验证后,研究团队还进行了转基因报告模型小鼠和肿瘤模型小鼠的验证工作。
“让整个系统在活体中工作,会遇到新的问题,比如递送的问题。”叶海峰解释,FAST系统由好几个质粒组成,它们进入细胞比较简单,但能不能突破重重阻碍进入到组织细胞里面呢?比如高效递送到肝脏和肿瘤组织里面,就需要借助于递送系统,而且递送的效率直接决定整个系统的工作效率。
“研究推进时,递送技术是又一个难题,我们最初直接通过静脉注射,效果却不是那么好。”叶海峰说,“细胞中工作的质粒在进入活体的时候受到了阻碍,因为整个系统承载的元件太多,所有元件同时递送的效率不能保证,且质粒会被机体认为是外来物而被清除掉。”
想进入活体,整个系统还需要再调整。“这就好比原来坐的卡车太大了、目标明显,需要换乘一个‘特洛伊木马’潜进去。”叶海峰说。
研究团队后来在合作团队的帮助下,使用另一种更小的、能够整合进细胞里的质粒进行递送工作。实验结果中,转基因小鼠在肝脏部位显示出了基因编辑的报告情况,表明小鼠肝脏细胞中DNA可通过光控编辑。
实体瘤是比组织器官更致密的组织,进入其中则需要进一步升级递送系统。
“为了把FAST系统高效递送到肿瘤组织细胞里面,我们与浙江大学专门制作DNA分子递送的团队合作,用纳米技术合成的材料实现了向肿瘤组织的高效递送。”叶海峰说。
在肿瘤小鼠模型中的验证结果显示,将FAST系统递送至小鼠体内的肿瘤后,通过远红光LED的照射,FAST系统能切割肿瘤致癌基因,从而显著抑制肿瘤的生长。
再好的技术只有走进应用才能实现价值。“之所以希望实现光控,初心就是希望推进广泛的应用。”叶海峰说,实验也证明了远红光可以透过小鼠的皮肤进入到小鼠的肝脏内部,甚至进入到实体瘤内部。这意味着FAST系统有疾病治疗的应用潜力。
叶海峰表示,团队仍在进一步优化光控基因表达系统,例如现在的光控系统需要光照2小时才能工作,而未来希望得到改进后,照射几秒就能产生效果。
本文转载自科技日报,作者张佳星。
- 标签:徐靖杰
- 编辑:白守业
- 相关文章
-
养娃压力大!南非女子诞下十胞胎家中共16个孩子
南非一名37岁女于7日在医院诞下10胞胎,7男3女,母子平安。加上家中的6个孩子,这名女子共有16个孩子…
- 李克强阐释为何须保障好医务人员的合理薪酬待遇
- 世卫组织重检意大利2019年血样!更多研究发现改写新冠疫情时间线
- 日本报告196人接种辉瑞新冠疫苗后死亡
- 广东新增9例本土确诊病例,均在广州
- 广州重症、危重症患者共9例!钟南山团队全程指导和参与病人救治
- 国家医保局:DRG和DIP付费试点城市将于2021年内实际付费
- 广东新增8例本土确诊病例,均在广州
- 节省医疗费用支出超4亿元!新疆药品集采"提质降价"
- 国家医保局等三部门:继续提高城乡居民基本医保筹资标准
- “996”“007”是拿命换钱?警惕加班熬夜带来的心脑血管疾病风险